亚洲日韩国产av无码无码精品,久久这是精品,被黑人轮流操到高潮,国产香蕉视频网站在线观看

皮革助劑成分分析需要提供多少樣品

報(bào)告用途: 科研、研發(fā)
檢測(cè)需要樣品量: 100g
檢測(cè)周期: 7-10個(gè)工作日
單價(jià): 5000.00元/件
發(fā)貨期限: 自買(mǎi)家付款之日起 天內(nèi)發(fā)貨
所在地: 廣東 廣州 增城
有效期至: 長(zhǎng)期有效
發(fā)布時(shí)間: 2023-12-13 16:42
最后更新: 2023-12-13 16:42
瀏覽次數(shù): 148
采購(gòu)咨詢:
請(qǐng)賣(mài)家聯(lián)系我
發(fā)布企業(yè)資料
詳細(xì)說(shuō)明

3293619086.jpg

未知物成分分析是通過(guò)綜合的分離和分析手段對(duì)復(fù)雜的未知化學(xué)品的成分進(jìn)行定性和定量分析,為科研、產(chǎn)品生產(chǎn)、產(chǎn)品開(kāi)發(fā)、改進(jìn)生產(chǎn)工藝提供科學(xué)依據(jù),為企業(yè)引進(jìn)、消化吸收再創(chuàng)新提供強(qiáng)大技術(shù)支撐。

未知物成分分析覆蓋電子、紡織、日化、塑料、橡膠等各個(gè)領(lǐng)域,具體包括:

? 助劑產(chǎn)品:紡織、皮革助劑(柔軟劑、勻染劑、整理劑等);電鍍(鋅、銅、鉻、鎳、貴重金屬)助劑(前處理添加劑、光亮劑、輔助光亮劑等);塑料和橡膠制品助劑(增塑劑、抗氧劑、阻燃劑、光和熱穩(wěn)定劑、發(fā)泡劑、填充劑、抗靜電劑等);涂料助劑(乳化劑、潤(rùn)濕分散劑、消泡劑、阻燃劑等);線路板制造化學(xué)品助劑;電子助焊劑;陶瓷助劑;鋁合金表面處理助劑;其它精細(xì)化工助劑

? 油墨產(chǎn)品:墨水,感光油墨等

? 化妝品:洗發(fā)、護(hù)發(fā)用品、護(hù)膚用品、美容用品、口腔衛(wèi)生制品等

? 香精、香料

? 表面活性劑、民用和工業(yè)用清洗劑

? 有機(jī)溶劑: 油漆稀釋劑,天那水,脫漆劑,電子、紡織、印刷行業(yè)用溶劑

? 水處理劑:緩蝕劑、混凝劑和絮凝劑、阻垢劑等

? 石油化學(xué)品:潤(rùn)滑油,切削液等

? 氣霧劑、光亮劑、殺蟲(chóng)劑、脫模劑、致冷劑、空氣清新劑等

? 高分子材料

? 其它化工產(chǎn)品

工業(yè)診斷分析是指通過(guò)樣品或生產(chǎn)過(guò)程中微量污染物的鑒定,來(lái)查找工業(yè)生產(chǎn)過(guò)程中的質(zhì)量事故原因的方法。
工業(yè)診斷分析需要綜合運(yùn)用各類常量、微量和痕量檢測(cè)技術(shù),主要成分與雜質(zhì)成分鑒定并舉,有機(jī)分析與無(wú)機(jī)分析并重,成分分析與生產(chǎn)工藝流程分析結(jié)合,尤其是對(duì)檢測(cè)結(jié)果的分析和綜合判斷能力要求很高,才能對(duì)產(chǎn)品質(zhì)量事故原因進(jìn)行分析診斷。

工業(yè)診斷分析業(yè)務(wù)已涉及精細(xì)化工、醫(yī)療制品及臨床、造紙、電鍍、精密儀器制造、汽車(chē)生產(chǎn)等工業(yè)領(lǐng)域。













































行業(yè)資訊:



Abstract: Single-cell mass spectrometry analysis enables metabolic profiling of individual cells, helps to reveal the heterogeneity among cells,which is of great significance in oncology research . Bladder cancer is the most common malignant tumor in the urinary system at present.Accurate iden? tification on the types of bladder cancer cells has an important value in life science and clinical appli? cation in the selection of treatment plan,prognosis judgment and drug resistance evaluation of pa? tients. In this paper, single-cell mass spectrometry combined with machine learning was used to identify bladder cancer cells.The metabolic profiles for different bladder cancer cell subtypes were investigated by single-cell mass spectrometry analysis system, and classification algorithms were studied. based on the collected single cell metabolic data,t-distributed stochastic neighbor embed? ding(t-SNE) clustering algorithm was used for dimensionality reduction analysis on the data,and the difference between the single cell metabolic profile was visualized in the two-dimensional space.In order to accurately identify different types of bladder cancer cells,linear discriminant analysis,ran? dom forest,support vector machine and logistic regression were respectively used to establish ma? chine learning classification models,and grid search method and 5-fold cross-validation were used to optimize the model parameters.Then,five repeats of 10-fold cross-validation were performed on all data sets,and the averaged statistical result was taken as the final result.Accuracy,sensitivity, specificity,receiver operating characteristic(ROC) analysis and other indicators were used to com? doi:10. 19969/j. fxcsxb. 收稿日期:2022-12-28;修回日期:2023-03-20 基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2022YFF0705002);國(guó)家自然科學(xué)基金資助項(xiàng)目(81902604);浙江省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目 (2020C03026,2020C02023);寧波市 3315創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2017A-17-C);寧波市重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022Z130);廣州市 番禺區(qū)創(chuàng)新創(chuàng)業(yè)**團(tuán)隊(duì)資助項(xiàng)目(2017-R01-5);寧波大學(xué)王寬誠(chéng)幸福基金項(xiàng)目 ? 通訊作者:金百冶,博士,主任醫(yī)師,研究方向:泌尿系腫瘤的臨床與基礎(chǔ)研究,E-mail:jinbaiye1964@zju. edu. cn 陳 臘,博士,助理研究員,研究方向:科學(xué)分析儀器研究與開(kāi)發(fā),E-mail:chenla@nbu. edu. cn 聞路紅,博士,教授,研究方向:科學(xué)分析儀器研究與開(kāi)發(fā),E-mail:wenluhong@nbu. edu. cn 分析測(cè)試學(xué)報(bào) 第 42 卷 prehensively evaluate the performance of the model.The results showed that the metabolites of a sin? gle bladder cancer cell,such as ADP,ATP,glutamic acid,pyroglutamic acid,glutathione,etc, were successfully detected by the single-cell mass spectrometry system.There were significant differ? ences among different types of bladder cancer cells,as well as large differences among single cells of the same type,indicating the high heterogeneity of single cell in the tumor.In addition,the four machine learning models all had good typing ability for bladder cancer cells,with a comprehensive accuracy not less than 94. 9%, a sensitivity not less than 88. 6% and a specificity not less than 93. 3%.Compared with other methods,the random forest algorithm has the highest classification ac? curacy,sensitivity and specificity,which are all up to ****,and the area under the ROC curve (AUC) of the model is up to 1,indicating that this method has obvious advantages in classification performance. The method presented in this paper realized the detection of metabolites and differentia? tion of cell subtypes at single cell level of bladder cancer,paving the way for more single cell metabo? lomics research in future. Key words:single-cell mass spectrometry;bladder cancer;metabolite detection;cell typing

相關(guān)皮革助劑產(chǎn)品
相關(guān)皮革助劑產(chǎn)品
相關(guān)產(chǎn)品